Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276458

RESUMO

Orthorhombic κ-Ga2O3 thin films were grown for the first time on polycrystalline diamond free-standing substrates by metal-organic vapor phase epitaxy at a temperature of 650 °C. Structural, morphological, electrical, and photoelectronic properties of the obtained heterostructures were evaluated by optical microscopy, X-ray diffraction, current-voltage measurements, and spectral photoconductivity, respectively. Results show that a very slow cooling, performed at low pressure (100 mbar) under a controlled He flow soon after the growth process, is mandatory to improve the quality of the κ-Ga2O3 epitaxial thin film, ensuring a good adhesion to the diamond substrate, an optimal morphology, and a lower density of electrically active defects. This paves the way for the future development of novel hybrid architectures for UV and ionizing radiation detection, exploiting the unique features of gallium oxide and diamond as wide-bandgap semiconductors.

2.
ACS Appl Mater Interfaces ; 15(39): 45997-46009, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733937

RESUMO

The interfacial properties of a planar SnO/κ-Ga2O3 p-n heterojunction have been investigated by capacitance-voltage (C-V) measurements following a methodological approach that allows consideration of significant combined series resistance and parallel leakage effects. Single-frequency measurements were carried out in both series- and parallel-model measurement configurations and then compared to the dual-frequency approach, which permits us to evaluate the depletion capacitance of diode independently of leakage conductance and series resistance. It was found that in the bias region, where the dissipation factor was low enough, they give the same results and provide reliable experimental C-V data. The doping profile extracted from the C-V data shows a nonuniformity at the junction interface that was attributed to a depletion of subsurface net donors at the n-side of the diode. This attribution was corroborated by doping profiles and carrier distributions in the n and p sides of the heterojunction obtained from the simulation of the measured C-V data by the Synopsys Sentaurus-TCAD suite. Hall effect measurements and Hg-probe C-V investigation on single κ-Ga2O3 layers, either as-grown or submitted to thermal treatments, support the hypothesis of the subsurface donor reduction during the SnO deposition. This study can shed light on the subsurface doping density variation in κ-Ga2O3 due to high-temperature treatment. The investigation of the SnO/κ-Ga2O3 heterointerface provides useful hints for the fabrication of diodes based on κ-Ga2O3. The methodological approach presented here is of general interest for reliable characterization of planar diodes.

3.
Inorg Chem ; 55(22): 12079-12084, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27934322

RESUMO

The crystal structure and ferroelectric properties of ε-Ga2O3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga2O3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P63mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga2O3 [10-10] direction being parallel to the Al2O3 direction [11-20], yielding a lattice mismatch of about 4.1%.

4.
Ann Chim ; 92(5-6): 491-500, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12125454

RESUMO

An electrothermal atomic absorption (ETAAS) method for the determination of traces of iron (0.1-1.0 microgram g-1) in Fe-doped indium phosphide (InP) has been developed. In order to overcome the indium matrix-effect and to achieve a useful detection limit, a preliminary solvent-extraction of Fe(III) with acetylacetone (HAA) is necessary. After sample dissolution with hydrochloric acid (1 + 1) the digest is evaporated to dryness, Fe(II) is oxidized to Fe(III) with nitric acid, the residue is dissolved in 0.01 mol L-1 HCl and the iron is extracted at pH 2.0 with 0.5 mol L-1 HAA in toluene. The organic phase is injected into the graphite furnace and the iron is directly evaluated by external organic standard calibration. The limit of detection (3SB) resulting from further in-situ preconcentration is 0.03 microgram g-1. When the method was applied to the analysis of real samples containing 0.2-0.7 microgram g-1 Fe, the RSD was in the range 8-21%. Results were compared with those independently obtained on the decomposed sample solution with inductively coupled atomic emission spectrometry (ICP-AES). The detection limit of the ICP-AES method, that needs matrix-matched standards, is 0.20 microgram g-1.


Assuntos
Índio/análise , Ferro/análise , Fosfinas/análise , Monitoramento Ambiental , Humanos , Espectrofotometria Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...